LIKELIHOOD RATIOS FOR DIFFUSION PROCESSES WITH SHIFTED MEAN VALUES

BY T. S. PITCHER

Let the stochastic process x(t) be the solution of the diffusion equation

$$x(t) = \int_0^t a(\tau, x(\tau))d\tau + \int_0^t \sigma(\tau)dy(\tau), \qquad 0 \le t \le 1,$$

$$x(0) = 0,$$

where y(t) is Brownian motion and a, a_2 and σ are continuous real-valued functions satisfying

$$(1) 0 < \epsilon \le \sigma(t) \le \frac{1}{\epsilon}$$

and

(2)
$$a(t, x) = \int_{-\infty}^{\infty} e^{i\mu x} A(\mu, t) d\mu,$$

$$\frac{\partial}{\partial x} a(t, x) = a_2(t, x) = \int_{-\infty}^{\infty} i\mu e^{i\mu x} A(\mu, t) d\mu,$$

$$\int_{-\infty}^{\infty} (1 + |\mu|) |A(\mu, t)| d\mu \leq K < \infty.$$

The existence and uniqueness of solutions to such equations is proved in [1, p. 277 ff]. Note that conditions (1) and (2) imply H1, H2, and H3 which are assumed there. Let F be the set of functions on the space of continuous paths from 0 to 1 of the form $f(x) = \hat{f}(x(t_1), \dots, x(t_n))$ where \hat{f} is a bounded function on R^n with bounded second derivatives and (t_i) are points in [0, 1]. For each real-valued function m on [0, 1] satisfying

(3)
$$m(t) = \int_0^t m'(s)ds, \qquad \int_0^1 (m'(s))^2 ds < \infty,$$

we define a group T_{α} of transformations on F by

$$T_{\alpha}f(x) = \hat{f}(x(t_1) + \alpha m(t_1), \cdots, x(t_n) + \alpha m(t_n))$$

and a set P_{α} of probability measures by closing the functionals $\iint dP_{\alpha} = E(T_{\alpha}f)$

Received by the editors March 10, 1961.

on F. (We will write P for P_0 .) It is not true in general that the P_{α} are mutually absolutely continuous nor even that the T_{α} can be extended to measurable transformations [3]. We shall prove that this is true under assumptions (1), (2), and (3) and find a formula for $\log (dP_{\alpha}/dP)$.

We define an operator D on F by

$$(Df)(x) = \frac{\partial}{\partial \alpha} (T_{\alpha}f)(x) \big|_{\alpha=0},$$

and a function ϕ_0 in $L_2(P)$ by

$$\phi_0(x) = \int_0^1 \frac{m'(t) - m(t)a_2(t, x(t))}{\sigma(t)} dy(t).$$

The existence of the stochastic integral ϕ_0 follows from conditions (1), (2) and (3) [1, p. 426 ff].

LEMMA 1. For any $f \in F$

$$\int \phi_0 T_{\alpha} f dP = \frac{\partial}{\partial \alpha} \int T_{\alpha} f dP.$$

Proof. Suppose $0 < t_1 < t_2 < \cdots < t_n < 1$ and define

$$f(\lambda, t) = \exp \left\{ i \sum_{j=1}^{n} \lambda_{j} x(t_{j}) + i \lambda x(t) \right\}$$

and

$$g(\lambda, t) = \int \phi_0 f(\lambda, t) dP - i \left(\sum_{j=1}^n \lambda_j m(t_j) + \lambda m(t) \right) \int f(\lambda, t) dP$$

for all λ and $t_n \le t \le 1$. The sample functions of the process x(t) are almost all continuous and this plus the dominated convergence theorem implies that g is continuous in the pair (λ, t) . Writing d/dt for the right hand derivative we have

$$\frac{d}{dt}g(\lambda,t) = \lim_{\delta \to 0^+} \left[\int \phi_0 f(\lambda,t) \frac{(e^{i\lambda\delta x} - 1)}{\delta} dP - i \left(\sum_{j=1}^n \lambda_j m(t_j) + \lambda m(t) \right) \int f(\lambda,t) \frac{(e^{i\lambda\delta x} - 1)}{\delta} dP - i \lambda \frac{(m(t+\delta) - m(t))}{\delta} \int f(\lambda,t) dP - i \lambda (m(t+\delta) - m(t)) \int f(\lambda,t) \frac{(e^{i\lambda\delta x} - 1)}{\delta} dP \right].$$

The first term is

$$\lim_{\delta \to 0^{+}} \frac{1}{\delta} \int \phi_{0} f(\lambda, t) \left[i\lambda \int_{t}^{t+\delta} a(\tau, x(\tau)) d\tau + i\lambda \int_{t}^{t+\delta} \sigma(\tau) dy(\tau) - \frac{\lambda^{2}}{2} \left(\int_{t}^{t+\delta} \sigma(\tau) dy(\tau) \right)^{2} \right] dP$$

$$= i\lambda \int \phi_{0} f(\lambda, t) a(t, x(t)) dP$$

$$+ \lim_{\delta \to 0^{+}} \frac{i\lambda}{\delta} \int_{t}^{t+\delta} d\tau \int f(\lambda, t) \left[m'(\tau) - m(\tau) a_{2}(\tau, x(\tau)) \right] dP$$

$$- \lim_{\delta \to 0^{+}} \frac{\lambda^{2}}{2\delta} \int_{t}^{t+\delta} \sigma^{2}(\tau) d\tau \int f(\lambda, t) \left[\int_{0}^{t} \frac{m'(\tau) - m(\tau) a_{2}(\tau, x(\tau))}{\sigma(\tau)} dy(\tau) \right] dP$$

using dominated convergence to get the first subterm and properties of the stochastic integral to get the other two. Further

$$\lim_{\delta \to 0^+} \frac{i\lambda}{\delta} \int_t^{t+\delta} d\tau \int f(\lambda, t) [m'(\tau) - m(\tau) a_2(\tau, x(\tau))] dP$$

$$= \lim_{\delta \to 0^+} \frac{i\lambda}{\delta} (m(t+\delta) - m(t)) \int f(\lambda, t) dP - i\lambda m(t) \int f(\lambda, t) a_2(t, x(t)) dP$$

and

$$-\lim_{\delta \to 0^+} \frac{\lambda^2}{2\delta} \int_{t}^{t+\delta} \sigma^2(\tau) d\tau \int f(\lambda, t) \left[\int_{0}^{t} \frac{m'(\tau) - m(\tau) a_2(\tau, x(\tau))}{\sigma(\tau)} dy(\tau) \right] dP$$

$$= \frac{-\lambda^2 \sigma^2(t)}{2} \int f(\lambda, t) \phi_0 dP.$$

A similar calculation shows that

$$\lim_{\delta \to 0^+} \int f(\lambda, t) \frac{(e^{i\lambda \delta x} - 1)}{\delta} dP = i\lambda \int f(\lambda, t) a(t, x(t)) dP - \frac{\lambda^2 \sigma^2(t)}{2} \int f(\lambda, t) dP.$$

Incorporating these in the original formula gives

$$\frac{d}{dt}g(\lambda,t) = \frac{-\lambda^2\sigma^2(t)}{2}g(\lambda,t) + i\lambda\int \phi_0 f(\lambda,t)a(t,x(t))dP$$
$$-i\lambda m(t)\int f(\lambda,t)a_2(t,x(t))dP$$
$$-i\lambda\left(i\sum_{i=1}^n \lambda_i m(t_i) + i\lambda m(t)\right)\int f(\lambda,t)a(t,x(t))dP.$$

Using the Fourier transforms of a and a_2 and interchanging $d\mu$ and dP integrations gives

$$\frac{d}{dt}g(\lambda,t)=i\lambda\int_{-\infty}^{\infty}g(\lambda+\mu,t)A(\mu,t)d\mu-\frac{\lambda^2\sigma^2(t)}{2}g(\lambda,t).$$

Since $|g(\lambda, t)| \leq B + C|\lambda|$

$$\frac{d}{dt} \left(\left| g(\lambda, t) \right|^2 \right) = 2 \operatorname{Re} i \lambda \overline{g(\lambda, t)} \int_{-\infty}^{\infty} g(\lambda + \mu, t) A(\mu, t) d\mu - \frac{\lambda^2 \sigma^2(t)}{2} \left| g(\lambda, t) \right|^2$$

$$\leq \left(B_1 \left| \lambda \right| + C_1 \left| \lambda \right|^2 \right) \left| g(\lambda, t) \right| - \frac{\lambda^2 \epsilon^2}{2} \left| g(\lambda, t) \right|^2.$$

Suppose now n=0 so that $|g(\lambda, 0)|=0$. If, for fixed λ , $|g(\lambda, t)|$ takes its maximum at $t(\lambda)>0$ and not before, then every interval to the left of $t(\lambda)$ contains a point where the right hand derivative of $|g(\lambda, t)|^2$ is non-negative; in particular this must be so for the t where $|g(\lambda, t)|$ is a minimum for this interval. At each of these points $|g(\lambda, t)| \leq B_2 + C_2 |\lambda|^{-1}$ from the above inequality, and since $\max |g(\lambda, t)|$ is a limit of these this inequality holds at all points of the interval. This implies that $g(\lambda, t)$ is bounded so that $h(t) = \sup_{\lambda} |g(\lambda, t)|$ is a bounded measurable function and

$$\frac{d}{dt}\left(\left|g(\lambda,t)\right|^{2}\right) \leq B_{3}\left|\lambda g(\lambda,t)\right|h(t) - \frac{\epsilon^{2}}{2}\left|\lambda g(\lambda,t)\right|^{2}.$$

Now by a similar argument $|\lambda g(\lambda, t)| \leq B_4 h(t) \leq B_5$ so that $d|g(\lambda, t)|^2/dt \leq B_4 h^2(t)$. It also follows from this that h is continuous since $|h(t) - h(t_0)| \leq 2B_5/|\lambda_0| + |\sup_{|\lambda| \leq |\lambda_0|} |g(\lambda, t)| - \sup_{|\lambda| \leq |\lambda_0|} |g(\lambda, t_0)|$ and this can be made arbitrarily small by choosing first $|\lambda_0|$ large enough and then t close enough to t_0 since the function $\sup_{|\lambda| \leq |\lambda_0|} |g(\lambda, t)|$ is continuous. Now it is easily shown that $|g(\lambda, t)|^2 \leq C_4 \int_0^t h^2(s) ds$ so that $h^2(t) \leq C_4 \int_0^t h^2(s) ds$ and hence that h = g = 0. If we have proved that $g(\lambda, t) = 0$ for $n \leq N$, then $g(\lambda, t_N) = 0$ and the argument above can be used on the interval $[t_N, 1]$ yielding an inductive proof that $g(\lambda, t) = 0$.

The above argument proves the lemma for $f(x) = \hat{f}(x(t_1), \dots, x(t_n))$ when $\hat{f} = \exp\{i\sum_j \lambda_j x_j\}$ and it follows from this, for any a and b, that $\int_a^b d\alpha \int \phi_0 T_\alpha f dP = \int (T_b f - T_a f) dP$ for such f. An application of Fubini's theorem extends this relation to all \hat{f} whose Fourier transforms are bounded and compactly supported, and hence to the algebra generated by these functions and the function 1 for which the lemma holds trivially. By the Stone-Weierstrass theorem such functions are uniformly dense in the algebra of functions continuous on R^n and at ∞ , so the integrated relation holds for all such functions. Since any \hat{f} in F can be approximated by a uniformly bounded set (f_n) of continuous functions of compact support converging at every (finite) point to \hat{f} this relation holds for all of F. The proof is now completed by

differentiating this relation with respect to b which can be done since $T_{\alpha}f$ is L_2 continuous for f in F.

Lemma 1 also holds for the conditional expectation of ϕ_0 on the field generated by the x(t) for t in [0, 1] which we shall call ϕ . For every f in F and $\alpha \ge 0$ the operator $V_f(\alpha)$ defined by

$$V_f(\alpha)g = \exp\left\{\frac{1}{2}\int_0^{\alpha} T_{-\beta}fd\beta\right\}T_{-\alpha}g$$

takes F into itself and satisfies $V_f(\alpha) V_f(\beta) = V_f(\alpha + \beta)$ and $V_f(0) = I$. It is easily shown using Lemma 1 that

$$\frac{\partial}{\partial \alpha} \int V_f(\alpha) g dP = \int \left(\frac{f}{2} - \phi\right) V_f(\alpha) g dP.$$

LEMMA 2. For any N there exists a sequence (f_n) from F converging to $\min(\phi, N) = \phi_N$ in $L_2(P)$ and satisfying $\sup f_n \leq N$. For any such sequence (f_n) , any g in F, and any $\alpha \geq 0$ the sequence $V_{f_n}(\alpha)$ g has a unique limit $D_N(\alpha)T_{-\alpha}$ g in $L_2(P)$. This convergence for fixed g is uniform in α on every finite interval.

Proof. Since F is dense in $L_2(P)$ there is a sequence (g_n) , $g_n(x) = \hat{g}_n(x(t_1), \dots, x(t_j))$ from F converging to ϕ_N . Then min (g_n, N) also converges to ϕ_N and the desired sequence can be gotten by convoluting min (\hat{g}_n, N) with a sequence (e_n) of functions having bounded second derivatives and supports contained in sufficiently small neighborhoods of 0. It will be sufficient to prove the remainder of the lemma for g = 1. Setting $V_f(\alpha)1 = D_f(\alpha)$, we have

$$\frac{\partial}{\partial \alpha} \int |D_{f_{n}}(\alpha) - D_{f_{m}}(\alpha)|^{2} dP
= \frac{\partial}{\partial \alpha} \int [D_{2f_{n}}(\alpha) - 2D_{f_{n}+f_{m}}(\alpha) + D_{2f_{m}}(\alpha)] dP
= \int [(f_{n} - \phi)D_{2f_{n}}(\alpha) - (f_{n} + f_{m} + 2\phi)D_{f_{n}+f_{m}}(\alpha) + (f_{m} - \phi)D_{2f_{m}}(\alpha)] dP
= \int [(f_{n} - \phi_{N}) + (\phi_{N} - \phi)][D_{f_{n}}(\alpha) - D_{f_{m}}(\alpha)]^{2}
+ \int (f_{m} - f_{n})(D_{2f_{m}}(\alpha) - D_{f_{n}+f_{m}}(\alpha)) dP
\leq [||f_{n} - \phi_{N}|| + ||f_{m} - f_{n}||] 4e^{N\alpha}$$

which implies Lemma 2.

LEMMA 3. $||D_N(\alpha)T_{-\alpha}g|| \le ||g||$ for any g in F. If $V_N(\alpha)$ is the extension of

this operator to $L_2(P)$ then $V_N(\alpha)$ is a strongly continuous semigroup satisfying $||V_N(\alpha)|| \le 1$.

Proof.

$$\frac{\partial}{\partial \alpha} \int |V_{f_n}(\alpha)g|^2 dP = \int (f_n - \phi)(V_{2f_n}(\alpha)(g^2)) dP$$

$$\leq ||f_n - \phi_N|| e^{N\alpha} \sup |g(x)|$$

and this implies the first assertion. It is easily shown that $V_{f_n}(\alpha)g$ is strongly continuous for any g in F and this plus uniform convergence in α implies the strong continuity of $V_N(\alpha)g$ for g in F, but since F is dense in $L_2(P)$ and $||V_N(\alpha)|| \le 1$ this is sufficient to prove the strong continuity of $V_N(\alpha)$. Finally for g in F

$$\begin{aligned} \|V_{N}(\alpha)V_{N}(\beta)g - V_{N}(\alpha + \beta)g\| &\leq \|V_{N}(\alpha)(V_{N}(\beta)g - V_{f_{n}}(\beta)g)\| \\ &+ \|(V_{N}(\alpha) - V_{f_{n}}(\alpha))V_{f_{n}}(\beta)g\| + \|V_{f_{n}}(\alpha + \beta)g - V_{N}(\alpha + \beta)g\| \\ &\leq \|V_{N}(\beta)g - V_{f_{n}}(\beta)g\| + e^{N\beta} \sup |g(x)| \|V_{N}(\alpha)1 - V_{f_{n}}(\alpha)1\| \\ &+ \|V_{f_{n}}(\alpha + \beta)g - V_{N}(\alpha + \beta)g\|, \end{aligned}$$

which can be made arbitrarily small and this trivially implies the semigroup equality for all elements of $L_2(P)$.

On F define $\hat{A}_N f = (1/2)\phi_N f - Df$ and $\hat{A}f = (1/2)\phi f - Df$, and let A_N and A be their respective closures.

LEMMA 4. A_N is the generator of $V_N(\alpha)$ and for any $\lambda > 0$, f in F and finite a and b

$$(\lambda - A_N) \int_a^b e^{-\alpha \lambda} V_N(\alpha) f d\alpha = e^{-a \lambda} V_N(a) f - e^{-b \lambda} V_N(b) f.$$

Proof. $\int_a^b e^{-\alpha\lambda} V_{f_n}(\alpha) g d\alpha$ is in F and converges to $\int_a^b e^{-\alpha\lambda} V_N(\alpha) g d\alpha$ for all g in F. We have

$$(\lambda - A_N) \int_a^b e^{-\alpha\lambda} V_{f_n}(\alpha) g d\alpha$$

$$= \frac{1}{2} (f_n - \phi_N) \int_a^b e^{-\alpha\lambda} V_{f_n}(\alpha) g d\alpha + e^{-\alpha\lambda} V_{f_n}(a) g - e^{-b\lambda} V_{f_n}(b) g$$

$$\to e^{-\alpha\lambda} V_N(a) g - e^{-b\lambda} V_N(b) g$$

since

$$\left\| (f_n - \phi_N) \int_a^b e^{-\alpha \lambda} V_{f_n}(\alpha) g d\alpha \right\| \leq \left\| f_n - \phi_N \right\| \int_a^b e^{-\alpha \lambda} e^{\alpha N} \sup \left| g(x) \right| d\alpha \to 0.$$

Let \overline{A} be the generator of $V_N(\alpha)$ and suppose that $\lambda > N$, then as $\alpha \to 0$ and

 $b\to\infty$ in the above we get $(\lambda-A_N)(\lambda-\overline{A})^{-1}g=g$ for all g in F and hence for all g and this implies that A_N contains \overline{A} . Finally, for g in F

$$V_N(\alpha)g = g + \lim_{n \to \infty} \int_0^{\alpha} V_{f_n}(\beta) [(1/2)f_ng - Dg] d\beta$$

$$= g + \lim_{n \to \infty} \int_0^{\alpha} V_{f_n}(\beta) [(1/2)\phi_Ng - Dg] d\beta$$

$$= g + \int_0^{\alpha} V_N(\beta) A_N g d\beta$$

so $\overline{A}g = \lim_{\epsilon \to 0} ((V_N(\epsilon)g - g)/\epsilon) = A_N g$, which shows that \overline{A} contains A_N and completes the proof.

LEMMA 5. $V_N(\alpha)$ converges strongly to a strongly continuous semigroup $V(\alpha)$ with generator A.

Proof. It is easily seen that $V_N(\alpha)1$ is a nondecreasing set of functions and since $\int V_N(\alpha)1dP \le ||V_N(\alpha)1|| \le 1$ it converges almost everywhere. This implies that $V_N(\alpha)f$ converges for all f in F and this plus the uniform boundedness of $||V_N(\alpha)||$ implies that all $V_N(\alpha)f$ converge. If $\lim_{N\to\infty} V_N(\alpha)f = V(\alpha)f$, then $||V(\alpha)f|| \le ||f||$ and $||V(\alpha+\beta)f - V(\alpha)V(\beta)f|| = ||V(\alpha+\beta)f - V_N(\alpha+\beta)f|| + ||V_N(\alpha)(V_N(\beta) - V(\beta))f|| + ||(V_N(\alpha) - V(\alpha))V(\beta)f||$ can be made arbitrarily small. For f in F

$$V(\alpha)f = f + \lim_{N \to \infty} \int_0^{\alpha} V_N(\beta) A_N f d\beta$$
$$= f + \lim_{N \to \infty} \int_0^{\alpha} V_N(\beta) A f d\beta$$
$$= f + \int_0^{\alpha} V(\beta) A f d\beta$$

which shows that $V(\alpha)f$ is strongly continuous for f in F and hence for all f. This equation also shows, as in the proof of Lemma 4, that the generator of $V(\alpha)$ contains A.

Now if K_N is any sequence which converges to ∞ , $\int_0^{K_N} e^{-\alpha \lambda} V_N(\alpha) f d\alpha$ converges to $\int_0^{\infty} e^{-\alpha \lambda} V(\alpha) f d\alpha$. The proof of the lemma will be complete if we can show that $(\lambda - A) \int_0^{\infty} e^{-\alpha \lambda} V(\alpha) f d\alpha = f$ for all f and this will be implied if we can show it for f in F.

$$(\lambda - A) \int_0^{K_N} e^{-\alpha \lambda} V_N(\alpha) f d\alpha$$

$$= \frac{1}{2} (\phi_N - \phi) \int_0^{K_N} e^{-\alpha \lambda} V_N(\alpha) f d\alpha - e^{-K_N \lambda} V_N(K_N) f + f.$$

Since the second term goes to 0 it will be sufficient to show that $\|\phi_N - \phi\|$ $\int_0^{K_N} e^{\alpha N} \sup |f| d\alpha$ goes to 0 for some K_N converging to ∞ . If $(\phi_0)_N$ is the original ϕ_0 chopped at N then the conditional expectation of $(\phi_0)_N$ on the field generated by the x(t)'s is less than or equal to ϕ_N so $\|\phi - \phi_N\|$ $\leq \|\phi_0 - (\phi_0)_N\|$. We have $\phi_0 = \psi + \eta(1)$ where $\psi = \int_0^t (m'(s)/\sigma(s)) dy(s)$ and $\eta(t) = -\int_0^t (m(s)a_2(s, x(s))/\sigma(s)) dy(s)$. Since $0 \leq \phi_0 - (\phi_0)_{2N} \leq \psi - \psi_N + \eta(1) - \eta_N(1)$ the two pieces can be handled separately. ψ is a Gaussian random variable so $\|\psi - \psi_N\| \leq e^{-BN^{\frac{1}{2}}}$ for some B > 0. Also setting $F(t) = -m(t)a_2(t, x(t))/\sigma(t)$ and defining $\xi(t)$ to be 1 if $\int_0^t F(s) dy(s) \geq N$ and 0 otherwise we have

$$\eta(t) - \eta_N(t) = \int_0^t F(s)\xi(s)dy(s).$$

Hence, using $|F(t)| \leq C$,

$$P(\eta(t) \ge N+1) \le E(||\eta(t) - \eta_N(t)||^2)$$

$$= \int_0^t E(F^2(s)\xi(s))ds \le C^2 \int_0^t P(\eta(s) \ge N)ds$$

and this relation plus $P(\eta(t) \ge 0) \le 1$ yields by induction $P(\eta(t) \ge N) \le (At)^N/N!$. This gives

$$\|\eta(1) - \eta(1)_N\|^2 \le \sum_{k=N}^{\infty} \frac{A^k}{k!} (k+1-N)^2 \le \frac{A^N e^A}{(N-2)!}$$

and by Stirling's formula this goes to 0 like $e^{DN} \log N$ for some D.

THEOREM. Under assumptions (1), (2), and (3):

- (i) The measures P_{α} are mutually absolutely continuous.
- (ii) (T_{α}) can be extended to a group of measurable linear transformations on all measurable functions preserving bounds and satisfying $T_{\alpha}(fg) = (T_{\alpha}f)(T_{\alpha}g)$.
 - (iii) $\log dP_{\alpha}/dP = \int_0^{\alpha} T_{-\beta} \phi d\beta$ for any measurable version of $T_{-\beta} \phi$.
- (iv) $V(\alpha)f = (dP_{\alpha}/dP)^{1/2}T_{-\alpha}f$ is a strongly continuous unitary group with generator A.

Proof. Since A generates a semigroup the range of iA - iI is all of $L_2(P)$. A similar argument using $\hat{T}_{\alpha} = T_{-\alpha}$ and $\hat{\phi} = -\phi$ will prove that the range of iA + iI is all of $L_2(P)$. These facts plus the symmetry of iA show that iA is self adjoint and this proves (iv). The proof of (i) follows from this for if (f_n) is a sequence from F decreasing to 0 almost everywhere with respect to P_{α} then $T_{\alpha}f_n$ decreases to 0 almost everywhere with respect to P and $\int |f_n|^2 dP_{\beta} = \int |T_{(\beta}f_n)|^2 dP = \int |V\beta - \alpha T_{\beta}f_n|^2 dP = \int D(\beta - \alpha)^2 |T_{\alpha}f_n|^2 dP \to 0$ by the dominated convergence theorem. The extension of T_{α} to all functions measurable on the extended field is now straightforward. To prove (iii) assuming $\alpha > 0$, choose

a uniformly bounded sequence $(f_{n,M})$ from F with $\lim_{n\to\infty} f_{n,M} = \phi_{N,M}$ almost everywhere where

$$\phi_{N,M}(x) = \begin{cases} N & \text{if } \phi(x) > N, \\ \phi(x) & \text{if } -M \leq \phi(x) \leq N, \\ -M & \text{if } \phi(x) < -M. \end{cases}$$

Now $\int_0^{\alpha} T_{-\beta} f_{n,M} d\beta$ converges on n to $\int_0^{\alpha} T_{-\beta} \phi_{N,M} d\beta$ in $L_1(P)$ so a subsequence converges almost everywhere. n can be chosen as a function of M to make the sequence $f_{n(M),M}$ converge to ϕ_N in $L_2(P)$ and

$$\left\| \exp\left\{ \frac{1}{2} \int_0^\alpha T_{-\beta} f_{\pi(M),M} d\beta \right\} - \exp\left\{ \frac{1}{2} \int_0^\alpha T_{-\beta} \phi_{N,M} d\beta \right\} \right\| \to 0 \quad \text{as} \quad M \to \infty.$$

Thus

$$D_N(\alpha) = \lim \exp \left\{ \frac{1}{2} \int_0^{\alpha} T_{-\beta} f_{n(M),M} d\beta \right\} = \exp \left\{ \frac{1}{2} \int_0^{\alpha} T_{-\beta} \phi_N d\beta \right\}$$

and

$$D(\alpha) = \left[\frac{dP_{\alpha}}{dP}\right]^{1/2} = \lim \exp\left\{\frac{1}{2}\int_{0}^{\alpha}T_{-\beta}\phi_{N}d\beta\right\} = \exp\left\{\frac{1}{2}\int_{0}^{\alpha}T_{-\beta}\phi d\beta\right\}.$$

The restriction in the above theorem that σ not depend on x(t) seems essential for without it one is led intuitively to the formula

$$\phi(x) = \int_0^1 \frac{m(t)\sigma_2(t, x(t))y'(t)}{\sigma(t)} dy(t) + \int_0^1 \frac{m'(t) - m(t)a_2(t, x(t))}{\sigma(t)} dy(t)$$

and the first integral is rather strongly "divergent."

The technique used in this paper was suggested by the solution to the corresponding problem where x(t) is a Gaussian stochastic process. There, if R(s, t) = E(x(s)x(t)) is the autocorrelation function for x(t) and if $m(s) = \int_0^1 R(s, t) dF(t)$ the infinitesimal generator again has the form $Af = (1/2)\phi f - Df$ where now $\phi(x) = \int_0^1 x(t) dF(t)$ [2]. We hope in future papers to apply this technique to other similar problems.

REFERENCES

- 1. J. L. Doob, Stochastic processes, New York, John Wiley and Sons, 1953.
- 2. T. S. Pitcher, Likelihood ratios of gaussian processes, Ark. Mat. vol. 4 (1959) pp. 35-44.
- 3. R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. vol. 21 (1954) pp. 623-627.

LINCOLN LABORATORY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, LEXINGTON, MASSACHUSETTS

^(*) Operated with support from the U. S. Army, Navy and Air Force.